Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 376
Filtrar
1.
Elife ; 122024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38639990

RESUMO

CD4+ T cell activation is driven by five-module receptor complexes. The T cell receptor (TCR) is the receptor module that binds composite surfaces of peptide antigens embedded within MHCII molecules (pMHCII). It associates with three signaling modules (CD3γε, CD3δε, and CD3ζζ) to form TCR-CD3 complexes. CD4 is the coreceptor module. It reciprocally associates with TCR-CD3-pMHCII assemblies on the outside of a CD4+ T cells and with the Src kinase, LCK, on the inside. Previously, we reported that the CD4 transmembrane GGXXG and cytoplasmic juxtamembrane (C/F)CV+C motifs found in eutherian (placental mammal) CD4 have constituent residues that evolved under purifying selection (Lee et al., 2022). Expressing mutants of these motifs together in T cell hybridomas increased CD4-LCK association but reduced CD3ζ, ZAP70, and PLCγ1 phosphorylation levels, as well as IL-2 production, in response to agonist pMHCII. Because these mutants preferentially localized CD4-LCK pairs to non-raft membrane fractions, one explanation for our results was that they impaired proximal signaling by sequestering LCK away from TCR-CD3. An alternative hypothesis is that the mutations directly impacted signaling because the motifs normally play an LCK-independent role in signaling. The goal of this study was to discriminate between these possibilities. Using T cell hybridomas, our results indicate that: intracellular CD4-LCK interactions are not necessary for pMHCII-specific signal initiation; the GGXXG and (C/F)CV+C motifs are key determinants of CD4-mediated pMHCII-specific signal amplification; the GGXXG and (C/F)CV+C motifs exert their functions independently of direct CD4-LCK association. These data provide a mechanistic explanation for why residues within these motifs are under purifying selection in jawed vertebrates. The results are also important to consider for biomimetic engineering of synthetic receptors.


Assuntos
Proteína Tirosina Quinase p56(lck) Linfócito-Específica , Placenta , Gravidez , Animais , Feminino , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/genética , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Placenta/metabolismo , Transdução de Sinais/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Complexo Receptor-CD3 de Antígeno de Linfócitos T/metabolismo , Fosforilação , Antígenos CD4 , Mamíferos/metabolismo
2.
Bioorg Chem ; 144: 107180, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38335758

RESUMO

Lymphocyte-specific protein tyrosine kinase (LCK), a member of the Src family of tyrosine kinases, is implicated in the pathogenesis of almost all types of leukemia via T cells activation and signal transduction. LCK is highly expressed in acute lymphoblastic leukemia (ALL), and knockdown of the LCK gene can significantly inhibit the proliferation of leukemia cell lines. Here, we designed and synthesized a series of benzothiazole derivatives as novel LCK inhibitors using both docking-based virtual screening and activity assays for structural optimization. Among these compounds, 7 m showed a strong inhibitory activity in the proliferation of leukemia cell lines and LCK kinase activity. Moreover, we found that compound 7 m could induce apoptosis while simultaneously blocking cell cycle via decreasing its phosphorylation at Tyr394 of the LCK. Collectively, these findings shed new light on compound 7 m that would be utilized as a promising drug candidate with apoptosis-triggered and cell cycle arrest activities for the future ALL therapy.


Assuntos
Proteína Tirosina Quinase p56(lck) Linfócito-Específica , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/genética , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Fosforilação , Transdução de Sinais , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Benzotiazóis/farmacologia
3.
J Exp Med ; 221(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37962568

RESUMO

Lymphocyte-specific protein tyrosine kinase (LCK) is essential for T cell antigen receptor (TCR)-mediated signal transduction. Here, we report two siblings homozygous for a novel LCK variant (c.1318C>T; P440S) characterized by T cell lymphopenia with skewed memory phenotype, infant-onset recurrent infections, failure to thrive, and protracted diarrhea. The patients' T cells show residual TCR signal transduction and proliferation following anti-CD3/CD28 and phytohemagglutinin (PHA) stimulation. We demonstrate in mouse models that complete (Lck-/-) versus partial (LckP440S/P440S) loss-of-function LCK causes disease with differing phenotypes. While both Lck-/- and LckP440S/P440S mice exhibit arrested thymic T cell development and profound T cell lymphopenia, only LckP440S/P440S mice show residual T cell proliferation, cytokine production, and intestinal inflammation. Furthermore, the intestinal disease in the LckP440S/P440S mice is prevented by CD4+ T cell depletion or regulatory T cell transfer. These findings demonstrate that P440S LCK spares sufficient T cell function to allow the maturation of some conventional T cells but not regulatory T cells-leading to intestinal inflammation.


Assuntos
Síndromes de Imunodeficiência , Linfopenia , Lactente , Humanos , Animais , Camundongos , Antígenos CD28 , Linfócitos T CD4-Positivos , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/genética , Receptores de Antígenos de Linfócitos T/genética , Inflamação/genética , Linfopenia/genética
4.
J Clin Immunol ; 44(1): 4, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38112969

RESUMO

Mutations affecting T-cell receptor (TCR) signaling typically cause combined immunodeficiency (CID) due to varying degrees of disturbed T-cell homeostasis and differentiation. Here, we describe two cousins with CID due to a novel nonsense mutation in LCK and investigate the effect of this novel nonsense mutation on TCR signaling, T-cell function, and differentiation. Patients underwent clinical, genetic, and immunological investigations. The effect was addressed in primary cells and LCK-deficient T-cell lines after expression of mutated LCK. RESULTS: Both patients primarily presented with infections in early infancy. The LCK mutation led to reduced expression of a truncated LCK protein lacking a substantial part of the kinase domain and two critical regulatory tyrosine residues. T cells were oligoclonal, and especially naïve CD4 and CD8 T-cell counts were reduced, but regulatory and memory including circulating follicular helper T cells were less severely affected. A diagnostic hallmark of this immunodeficiency is the reduced surface expression of CD4. Despite severely impaired TCR signaling mTOR activation was partially preserved in patients' T cells. LCK-deficient T-cell lines reconstituted with mutant LCK corroborated partially preserved signaling. Despite detectable differentiation of memory and effector T cells, their function was severely disturbed. NK cell cytotoxicity was unaffected. Residual TCR signaling in LCK deficiency allows for reduced, but detectable T-cell differentiation, while T-cell function is severely disturbed. Our findings expand the previous report on one single patient on the central role of LCK in human T-cell development and function.


Assuntos
Síndromes de Imunodeficiência , Doenças da Imunodeficiência Primária , Humanos , Códon sem Sentido , Síndromes de Imunodeficiência/diagnóstico , Síndromes de Imunodeficiência/genética , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/genética , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/química , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Fosforilação , Doenças da Imunodeficiência Primária/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais
5.
Int J Mol Sci ; 24(19)2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37833951

RESUMO

The protein tyrosine phosphatase PTPN22 inhibits T cell activation by dephosphorylating some essential proteins in the T cell receptor (TCR)-mediated signaling pathway, such as the lymphocyte-specific protein tyrosine kinase (Lck), Src family tyrosine kinases Fyn, and the phosphorylation levels of Zeta-chain-associated protein kinase-70 (ZAP70). For the first time, we have successfully produced PTPN22 CS transgenic mice in which the tyrosine phosphatase activity of PTPN22 is suppressed. Notably, the number of thymocytes in the PTPN22 CS mice was significantly reduced, and the expression of cytokines in the spleen and lymph nodes was changed significantly. Furthermore, PTPN22 CS facilitated the positive and negative selection of developing thymocytes, increased the expression of the TCRαß-CD3 complex on the thymus cell surface, and regulated their internalization and recycling. ZAP70, Lck, Phospholipase C gamma1(PLCγ1), and other proteins were observed to be reduced in PTPN22 CS mouse thymocytes. In summary, PTPN22 regulates TCR internalization and recycling via the modulation of the TCR signaling pathway and affects TCR expression on the T cell surface to regulate negative and positive selection. PTPN22 affected the development of the thymus, spleen, lymph nodes, and other peripheral immune organs in mice. Our study demonstrated that PTPN22 plays a crucial role in T cell development and provides a theoretical basis for immune system construction.


Assuntos
Receptores de Antígenos de Linfócitos T , Quinases da Família src , Animais , Camundongos , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/genética , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Camundongos Transgênicos , Fosforilação , Proteínas Tirosina Fosfatases/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Quinases da Família src/metabolismo
6.
Exp Clin Transplant ; 21(12): 961-972, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38263783

RESUMO

OBJECTIVES: The prevention and treatment of liver transplant rejection remain challenging. We investigated the pathophysiological mechanisms of liver transplant rejection in rats and screened candidate genes to determine their degree of rejection response for possible development of potential therapeutic targets. MATERIALS AND METHODS: Brown Norway-Brown Norway transplant tolerant models and Lewis-Brown Norway transplant rejection models were established. We collected liver tissue and venous blood at 7 days posttransplant for hematoxylin and eosin staining and RNA sequencing analysis, respectively. We conducted differential expression gene analysis, KEGG and GO enrichment analysis. We performed immunohistochemistry to detect highly expressed immunerelated proteins, including lymphocyte-specific protein tyrosine kinase, linker for activation of T cells, and 70-kDa T-cell receptor zeta-chain-associated protein kinase. RESULTS: Significant differences were found in liver function and Banff scores between rejection and tolerant groups, indicating the successful establishment of liver transplant models. RNA-sequencing screened 7521 differentially expressed genes, with 3355 upregulated and 3058 downregulated. KEGG analysis of upregulated genes showed that 8 of the top 20 enrichment pathways were associated with immune system processes and 5 were related to immune system diseases. Among these immune pathways, 289 genes were upregulated; of these, 147 genes were removed after comparison with the IMMPORT database, of which 97 genes were significantly changed. Our GO analysis showed upregulated genes mainly participating in immune response processes, with downregulated genes mainly participating in metabolic processes. Real-time polymerase chain reaction and immunohistochemistry verified expression of the immune-related proteins, consistent with RNAsequencing results, which were mainly expressed in inflammatory cells in sinus and portal vein. CONCLUSIONS: Immune-related genes were found to be associated with liver transplant rejection. The 3 immune-related genes that we analyzed may play a role in liver transplant rejection and can possibly serve as candidate markers for monitoring the degree of liver transplant rejection.


Assuntos
Transplante de Fígado , Proteína Tirosina Quinase p56(lck) Linfócito-Específica , Linfócitos T , Proteína-Tirosina Quinase ZAP-70 , Animais , Ratos , Complicações Pós-Operatórias , Ratos Endogâmicos Lew , Receptores de Antígenos de Linfócitos T , Proteína-Tirosina Quinase ZAP-70/genética , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/genética
7.
Int J Mol Sci ; 23(22)2022 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-36430477

RESUMO

Lymphocyte-specific protein tyrosine kinase (LCK) is common in a variety of hematologic malignancies but comparatively less common in solid tumors. This study aimed to explore the potential diagnostic and prognostic value of LCK across tumors through integrative and comprehensive pan-cancer analysis, as well as experimental validation. Multiple databases were used to explore the expression, alteration, prognostic value, association with immune infiltration, and potential functional pathways of LCK in pan-cancers. The results were further validated by western blotting and qPCR of patient samples as well as tumor cell lines. High LCK expression typically represents a better prognosis. Notably, drug sensitivity prediction of LCK identified P-529 as a candidate for drug development. Gene Annotations (GO) and KEGG analyses showed significant enrichment of PD-L1 and the T-cell receptor pathway. The results from patient samples and tumor cell lines confirmed these conclusions in LIHC. In conclusion, LCK is differentially expressed in multiple tumors and normal tissues. Further analysis highlighted its association with prognostic implications, pan-cancer genetic alterations, and immune signatures. Our data provide evidence for a diagnostic marker of LCK and the possible use of LCK as a target for the treatment of tumors.


Assuntos
Proteína Tirosina Quinase p56(lck) Linfócito-Específica , Neoplasias , Humanos , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/genética , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Linhagem Celular Tumoral , Linfócitos/metabolismo , Neoplasias/genética
8.
J Biol Chem ; 298(12): 102663, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36372231

RESUMO

Theoretical work suggests that collective spatiotemporal behavior of integral membrane proteins should be modulated by boundary lipids sheathing their membrane anchors. Here, we show evidence for this prediction while investigating the mechanism for maintaining a steady amount of the active form of integral membrane protein Lck kinase (LckA) by Lck trans-autophosphorylation regulated by the phosphatase CD45. We used super-resolution microscopy, flow cytometry, and pharmacological and genetic perturbation to gain insight into the spatiotemporal context of this process. We found that LckA is generated exclusively at the plasma membrane, where CD45 maintains it in a ceaseless dynamic equilibrium with its unphosphorylated precursor. Steady LckA shows linear dependence, after an initial threshold, over a considerable range of Lck expression levels. This behavior fits a phenomenological model of trans-autophosphorylation that becomes more efficient with increasing LckA. We then challenged steady LckA formation by genetically swapping the Lck membrane anchor with structurally divergent ones, such as that of Src or the transmembrane domains of LAT, CD4, palmitoylation-defective CD4 and CD45 that were expected to drastically modify Lck boundary lipids. We observed small but significant changes in LckA generation, except for the CD45 transmembrane domain that drastically reduced LckA due to its excessive lateral proximity to CD45. Comprehensively, LckA formation and maintenance can be best explained by lipid bilayer critical density fluctuations rather than liquid-ordered phase-separated nanodomains, as previously thought, with "like/unlike" boundary lipids driving dynamical proximity and remoteness of Lck with itself and with CD45.


Assuntos
Proteína Tirosina Quinase p56(lck) Linfócito-Específica , Processamento de Proteína Pós-Traducional , Antígenos Comuns de Leucócito/metabolismo , Bicamadas Lipídicas/metabolismo , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/genética , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Fosforilação , Domínios Proteicos
9.
Elife ; 112022 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-35861317

RESUMO

CD4+ T cells use T cell receptor (TCR)-CD3 complexes, and CD4, to respond to peptide antigens within MHCII molecules (pMHCII). We report here that, through ~435 million years of evolution in jawed vertebrates, purifying selection has shaped motifs in the extracellular, transmembrane, and intracellular domains of eutherian CD4 that enhance pMHCII responses, and covary with residues in an intracellular motif that inhibits responses. Importantly, while CD4 interactions with the Src kinase, Lck, are viewed as key to pMHCII responses, our data indicate that CD4-Lck interactions derive their importance from the counterbalancing activity of the inhibitory motif, as well as motifs that direct CD4-Lck pairs to specific membrane compartments. These results have implications for the evolution and function of complex transmembrane receptors and for biomimetic engineering.


Assuntos
Antígenos CD4 , Proteína Tirosina Quinase p56(lck) Linfócito-Específica , Animais , Complexo CD3/metabolismo , Antígenos CD4/genética , Antígenos CD4/metabolismo , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/metabolismo , Ativação Linfocitária , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/genética , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Complexo Receptor-CD3 de Antígeno de Linfócitos T/metabolismo , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Quinases da Família src/metabolismo
10.
Int J Mol Sci ; 23(13)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35806279

RESUMO

Signaling via the TCR, which is initiated by the Src-family tyrosine kinase Lck, is crucial for the determination of cell fates in the thymus. Because of its pivotal role, ablation of Lck results in a profound block of T-cell development. Here, we show that, in addition to its well-known function in the initiation of TCR signaling, Lck also acts at a more downstream level. This novel function of Lck is determined by the tyrosine residue (Y192) located in its SH2 domain. Thymocytes from knock-in mice expressing a phosphomimetic Y192E mutant of Lck initiate TCR signaling upon CD3 cross-linking up to the level of PLC-γ1 phosphorylation. However, the activation of downstream pathways including Ca2+ influx and phosphorylation of Erk1/2 are impaired. Accordingly, positive and negative selections are blocked in LckY192E knock-in mice. Collectively, our data indicate that Lck has a novel function downstream of PLCγ-1 in the regulation of thymocyte differentiation and selection.


Assuntos
Proteína Tirosina Quinase p56(lck) Linfócito-Específica , Fosfolipase C gama , Receptores de Antígenos de Linfócitos T , Timo , Quinases da Família src , Animais , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/genética , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Camundongos , Fosfolipase C gama/imunologia , Fosforilação , Receptores de Antígenos de Linfócitos T/imunologia , Transdução de Sinais , Timo/imunologia , Domínios de Homologia de src , Quinases da Família src/imunologia
11.
Cell Death Dis ; 13(6): 524, 2022 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-35665750

RESUMO

Transient receptor potential melastatin 8 (TRPM8) functions as a Ca2+-permeable channel in the plasma membrane (PM). Dysfunction of TRPM8 is associated with human pancreatic cancer and several other diseases in clinical patients, but the underlying mechanisms are unclear. Here, we found that lymphocyte-specific protein tyrosine kinase (LCK) directly interacts with TRPM8 and potentiates TRPM8 phosphorylation at Y1022. LCK positively regulated channel function characterized by increased TRPM8 current densities by enhancing TRPM8 multimerization. Furthermore, 14-3-3ζ interacted with TRPM8 and positively modulated channel multimerization. LCK significantly enhanced the binding of 14-3-3ζ and TRPM8, whereas mutant TRPM8-Y1022F impaired TRPM8 multimerization and the binding of TRPM8 and 14-3-3ζ. Knockdown of 14-3-3ζ impaired the regulation of TRPM8 multimerization by LCK. In addition, TRPM8 phosphotyrosine at Y1022 feedback regulated LCK activity by inhibiting Tyr505 phosphorylation and modulating LCK ubiquitination. Finally, we revealed the importance of TRPM8 phosphorylation at Y1022 in the proliferation, migration, and tumorigenesis of pancreatic cancer cells. Our findings demonstrate that the LCK-14-3-3ζ-TRPM8 axis for regulates TRPM8 assembly, channel function, and LCK activity and maybe provide potential therapeutic targets for pancreatic cancer.


Assuntos
Neoplasias Pancreáticas , Canais de Cátion TRPM , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Humanos , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/genética , Proteínas de Membrana/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Fosforilação , Canais de Cátion TRPM/genética , Canais de Cátion TRPM/metabolismo , Neoplasias Pancreáticas
12.
Pediatr Blood Cancer ; 69(9): e29848, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35714314

RESUMO

Erythroid sarcoma is a very rare subtype of myeloid sarcoma with undetermined biological features. Here, we present an infant with a multifocal erythroid sarcoma, diagnosed because the tumor cells were positive for glycophorin A. After acute myeloid leukemia-oriented chemotherapy and surgical resection followed by cord blood transplantation, he has successfully maintained complete remission without any late effects. Total transcriptome analysis of the tumor identified a novel fusion gene, RCC1-LCK, and high LCK expression levels, suggesting that LCK overexpression was involved in leukemogenesis in this case.


Assuntos
Leucemia Mieloide Aguda , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/genética , Sarcoma Mieloide , Sarcoma , Proteínas de Ciclo Celular , Fatores de Troca do Nucleotídeo Guanina , Humanos , Lactente , Leucemia Mieloide Aguda/genética , Masculino , Proteínas Nucleares , Sarcoma Mieloide/genética
13.
J Clin Invest ; 131(21)2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34491908

RESUMO

Initiation of T cell receptor (TCR) signaling involves the activation of the tyrosine kinase LCK; however, it is currently unclear how LCK is recruited and activated. Here, we have identified the membrane protein CD146 as an essential member of the TCR network for LCK activation. CD146 deficiency in T cells substantially impaired thymocyte development and peripheral activation, both of which depend on TCR signaling. CD146 was found to directly interact with the SH3 domain of coreceptor-free LCK via its cytoplasmic domain. Interestingly, we found CD146 to be present in both monomeric and dimeric forms in T cells, with the dimerized form increasing after TCR ligation. Increased dimerized CD146 recruited LCK and promoted LCK autophosphorylation. In tumor models, CD146 deficiency dramatically impaired the antitumor response of T cells. Together, our data reveal an LCK activation mechanism for TCR initiation. We also underscore a rational intervention based on CD146 for tumor immunotherapy.


Assuntos
Proteína Tirosina Quinase p56(lck) Linfócito-Específica/imunologia , Neoplasias Experimentais/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Transdução de Sinais/imunologia , Linfócitos T/imunologia , Animais , Antígeno CD146/genética , Antígeno CD146/imunologia , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/genética , Camundongos , Camundongos Knockout , Neoplasias Experimentais/genética , Neoplasias Experimentais/terapia , Receptores de Antígenos de Linfócitos T/genética , Transdução de Sinais/genética
14.
Immunohorizons ; 5(9): 772-781, 2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34583938

RESUMO

Innate-like T cells, including invariant NKT cells, mucosal-associated invariant T (MAIT) cells, and γ δ T (γδT) cells, are groups of unconventional T lymphocytes. They play important roles in the immune system. Because of the lack of Cre recombinase lines that are specific for innate-like T cells, pan-T cell Cre lines are often used to study innate-like T cells. In this study, we found that distal Lck promoter-driven Cre (dLckCre) in which the distal Lck gene promoter drives Cre expression in the late stage of thymocyte development has limited function in the innate-like T cells using ROSA26floxed-Stop-tdTomato reporter. Innate-like T cells differentiate into mature functional subsets comparable to the CD4+ Th subsets under homeostatic conditions. We further showed that dLckCre-expressing γδT cells are strongly biased toward γδT1 phenotype. Interestingly, the γδT cells residing in the epidermis and comprising the vast majority of dendritic epidermal T cells nearly all express dLckCre, indicating dLckCre is a useful tool for studying dendritic epidermal T cells. Taken together, these data suggest that Lck distal promoter has different activity in the conventional and unconventional T cells. The use of dLCKcre transgenic mice in the innate-like T cells needs to be guided by a reporter for the dLckCre function.


Assuntos
Linfócitos Intraepiteliais/imunologia , Células T Invariantes Associadas à Mucosa/imunologia , Células T Matadoras Naturais/imunologia , Animais , Diferenciação Celular/imunologia , Separação Celular , Citometria de Fluxo , Genes Reporter/genética , Integrases/genética , Linfócitos Intraepiteliais/metabolismo , Proteínas Luminescentes/genética , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/genética , Camundongos , Camundongos Transgênicos , Células T Invariantes Associadas à Mucosa/metabolismo , Células T Matadoras Naturais/metabolismo , Regiões Promotoras Genéticas/genética
15.
Biomed Res Int ; 2021: 8357585, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34395626

RESUMO

BACKGROUND: Glioblastoma multiforme (GBM) is the most common and aggressive primary malignancy in adults with high aggression. The prognosis of GBM patients is poor. There is a critical need for novel biomarkers for the prognosis and therapy of GBM. METHODS: Differentially expressed genes (DEGs) in GBM were screened using TCGA cohort. Univariate and multivariate Cox regression analyses were performed on DEGs to identify the optimal prognosis-related genes. qRT-PCR was performed to verify the result. RESULTS: A total of 5216 DEGs, including 2785 upregulated and 2458 downregulated genes, were obtained. Enrichment analysis revealed that these DEGs were mainly involved in the p53 signaling pathway and cell cycle, immune response, and MAPK signaling pathways. Moreover, the top 50 DEGs were associated with drug resistance or drug sensitivity. Prognosis analysis revealed that GBM patients with a high expression of CD163 and CHI3L2 had a poor overall survival, prognosis-free survival, and disease-specific survival. The univariate and multivariate analyses revealed that CD163 and age were independent factors affecting the prognosis of GBM patients. A validation study revealed that CD163 was upregulated in GBM tissues and associated with poor overall survival. Moreover, further analysis revealed that CD163 showed significant correlation with immune cells, immune biomarkers, chemokines, and chemokine receptors. We also identified several CD163-associated kinase, miRNA, and transcription factor targets in GBM, including LCK, miR-483, and ELF1. CONCLUSIONS: In conclusion, our study suggested CD163 as a prognostic biomarker and associated it with immune infiltration in GBM.


Assuntos
Antígenos CD/genética , Antígenos de Diferenciação Mielomonocítica/genética , Biomarcadores Tumorais/genética , Neoplasias Encefálicas/genética , Quitinases/genética , Perfilação da Expressão Gênica/métodos , Glioblastoma/genética , Receptores de Superfície Celular/genética , Regulação para Cima , Fatores Etários , Neoplasias Encefálicas/imunologia , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Glioblastoma/imunologia , Humanos , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/genética , MicroRNAs/genética , Mutação , Proteínas Nucleares/genética , Prognóstico , Mapas de Interação de Proteínas , Análise de Sobrevida , Fatores de Transcrição/genética
16.
J Immunol ; 207(4): 1128-1137, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34321230

RESUMO

TCR signaling critically depends on the tyrosine kinase Lck (lymphocyte-specific protein tyrosine kinase). Two phosphotyrosines, the activating pTyr394 and the inhibitory pTyr505, control Lck activity. Recently, pTyr192 in the Lck SH2 domain emerged as a third regulator. How pTyr192 may affect Lck function remains unclear. In this study, we explored the role of Lck Tyr192 using CRISPR/Cas9-targeted knock-in mutations in the human Jurkat T cell line. Our data reveal that both Lck pTyr394 and pTyr505 are controlled by Lck Tyr192 Lck with a nonphosphorylated SH2 domain (Lck Phe192) displayed hyperactivity, possibly by promoting Lck Tyr394 transphosphorylation. Lck Glu192 mimicking stable Lck pTyr192 was inhibited by Tyr505 hyperphosphorylation. To overcome this effect, we further mutated Tyr505 The resulting Lck Glu192/Phe505 displayed strongly increased amounts of pTyr394 both in resting and activated T cells. Our results suggest that a fundamental role of Lck pTyr192 may be to protect Lck pTyr394 and/or pTyr505 to maintain a pool of already active Lck in resting T cells. This provides an additional mechanism for fine-tuning of Lck as well as T cell activity.


Assuntos
Proteína Tirosina Quinase p56(lck) Linfócito-Específica , Linfócitos T , Humanos , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/genética , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Fosforilação , Transdução de Sinais , Linfócitos T/metabolismo , Domínios de Homologia de src
17.
Nat Commun ; 12(1): 3705, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-34140493

RESUMO

Peripheral T-cell lymphoma (PTCL) is a heterogeneous group of non-Hodgkin lymphomas with poor prognosis. Up to 30% of PTCL lack distinctive features and are classified as PTCL, not otherwise specified (PTCL-NOS). To further improve our understanding of the genetic landscape and biology of PTCL-NOS, we perform RNA-sequencing of 18 cases and validate results in an independent cohort of 37 PTCL cases. We identify FYN-TRAF3IP2, KHDRBS1-LCK and SIN3A-FOXO1 as new in-frame fusion transcripts, with FYN-TRAF3IP2 as a recurrent fusion detected in 8 of 55 cases. Using ex vivo and in vivo experiments, we demonstrate that FYN-TRAF3IP2 and KHDRBS1-LCK activate signaling pathways downstream of the T cell receptor (TCR) complex and confer therapeutic vulnerability to clinically available drugs.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas de Ligação a DNA/genética , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/genética , Linfoma de Células T Periférico/genética , Proteínas de Fusão Oncogênica/metabolismo , Proteínas Proto-Oncogênicas c-fyn/genética , Proteínas de Ligação a RNA/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Estudos de Coortes , Proteínas de Ligação a DNA/metabolismo , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Estimativa de Kaplan-Meier , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Linfoma de Células T Periférico/metabolismo , Linfoma de Células T Periférico/patologia , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Proteínas de Fusão Oncogênica/genética , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Proteínas de Ligação a RNA/metabolismo , RNA-Seq , Transdução de Sinais/genética , Complexo Correpressor Histona Desacetilase e Sin3/genética , Complexo Correpressor Histona Desacetilase e Sin3/metabolismo , Proteína bcl-X/antagonistas & inibidores , Proteína bcl-X/metabolismo
18.
Front Immunol ; 12: 656366, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34149695

RESUMO

Amphioxus (e.g., Branchiostoma belcheri, Bb) has recently emerged as a new model for studying the origin and evolution of vertebrate immunity. Mammalian lymphocyte-specific tyrosine kinase (Lck) plays crucial roles in T cell activation, differentiation and homeostasis, and is reported to phosphorylate both the ITIM and ITSM of PD-1 to induce the recruitment of phosphatases and thus the inhibitory function of PD-1. Here, we identified and cloned the amphioxus homolog of human Lck. By generating and using an antibody against BbLck, we found that BbLck is expressed in the amphioxus gut and gill. Through overexpression of BbLck in Jurkat T cells, we found that upon TCR stimulation, BbLck was subjected to tyrosine phosphorylation and could partially rescue Lck-dependent tyrosine phosphorylation in Lck-knockdown T cells. Mass spectrometric analysis of BbLck immunoprecipitates from immunostimulants-treated amphioxus, revealed a BbLck-associated membrane-bound receptor LRR (BbLcLRR). By overexpressing BbLcLRR in Jurkat T cells, we demonstrated that BbLcLRR was tyrosine phosphorylated upon TCR stimulation, which was inhibited by Lck knockdown and was rescued by overexpression of BbLck. By mutating single tyrosine to phenylalanine (Y-F), we identified three tyrosine residues (Y539, Y655, and Y690) (3Y) of BbLcLRR as the major Lck phosphorylation sites. Reporter gene assays showed that overexpression of BbLcLRR but not the BbLcLRR-3YF mutant inhibited TCR-induced NF-κB activation. In Lck-knockdown T cells, the decline of TCR-induced IL-2 production was reversed by overexpression of BbLck, and this reversion was inhibited by co-expression of BbLcLRR but not the BbLcLRR-3YF mutant. Sequence analysis showed that the three tyrosine-containing sequences were conserved with the tyrosine-based inhibition motifs (ITIMs) or ITIM-like motifs. And TCR stimulation induced the association of BbLcLRR with tyrosine phosphatases SHIP1 and to a lesser extent with SHP1/2. Moreover, overexpression of wild-type BbLcLRR but not its 3YF mutant inhibited TCR-induced tyrosine phosphorylation of multiple signaling proteins probably via recruiting SHIP1. Thus, we identified a novel immunoreceptor BbLcLRR, which is phosphorylated by Lck and then exerts a phosphorylation-dependent inhibitory role in TCR-mediated T-cell activation, implying a mechanism for the maintenance of self-tolerance and homeostasis of amphioxus immune system and the evolutionary conservatism of Lck-regulated inhibitory receptor pathway.


Assuntos
Receptores Coestimuladores e Inibidores de Linfócitos T/metabolismo , Anfioxos/metabolismo , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Animais , Biomarcadores , Clonagem Molecular , Receptores Coestimuladores e Inibidores de Linfócitos T/genética , Bases de Dados Genéticas , Ensaio de Imunoadsorção Enzimática , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Imunofenotipagem , Interleucina-2/biossíntese , Células Jurkat , Anfioxos/genética , Ativação Linfocitária , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/genética , Fosforilação , Coelhos , Receptores de Antígenos de Linfócitos T/metabolismo , Análise de Sequência de DNA , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
19.
Mol Cancer ; 20(1): 88, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-34116687

RESUMO

BACKGROUND: Cancer metastases are the main cause of lethality. The five-year survival rate for patients diagnosed with advanced stage oral cancer is 30%. Hence, the identification of novel therapeutic targets is an urgent need. However, tumors are comprised of a heterogeneous collection of cells with distinct genetic and molecular profiles that can differentially promote metastasis making therapy development a challenging task. Here, we leveraged intratumoral heterogeneity in order to identify drivers of cancer cell motility that might be druggable targets for anti-metastasis therapy. METHODS: We used 2D migration and 3D matrigel-based invasion assays to characterize the invasive heterogeneity among and within four human oral cancer cell lines in vitro. Subsequently, we applied mRNA-sequencing to map the transcriptomes of poorly and strongly invasive subclones as well as primary tumors and matched metastasis. RESULTS: We identified SAS cells as a highly invasive oral cancer cell line. Clonal analysis of SAS yielded a panel of 20 subclones with different invasive capacities. Integrative gene expression analysis identified the Lymphocyte cell-specific protein-tyrosine kinase (LCK) as a druggable target gene associated with cancer cell invasion and metastasis. Inhibition of LCK using A-770041 or dasatinib blocked invasion of highly aggressive SAS cells. Interestingly, reduction of LCK activity increased the formation of adherens junctions and induced cell differentiation. CONCLUSION: Analysis of invasive heterogeneity led to the discovery of LCK as an important regulator of motility in oral cancer cells. Hence, small molecule mediated inhibition of LCK could be a promising anti-metastasis therapy option for oral cancer patients.


Assuntos
Carcinoma de Células Escamosas/patologia , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/genética , Neoplasias Bucais/patologia , Invasividade Neoplásica/genética , Antineoplásicos/farmacologia , Carcinoma de Células Escamosas/genética , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Dasatinibe/farmacologia , Humanos , Neoplasias Bucais/genética , Invasividade Neoplásica/patologia , Transcriptoma
20.
Eur J Vasc Endovasc Surg ; 61(6): 1008-1016, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33858751

RESUMO

OBJECTIVE: Perivascular adipose tissue (PVAT) contributes to vascular homeostasis and is increasingly linked to vascular pathology. PVAT density and volume were associated with abdominal aortic aneurysm (AAA) presence and dimensions on imaging. However, mechanisms underlying the role of PVAT in AAA have not been clarified. This study aimed to explore differences in PVAT from AAA using gene expression and functional tests. METHODS: Human aortic PVAT and control subcutaneous adipose tissue were collected during open AAA surgery. Gene analyses and functional tests were performed. The control group consisted of healthy aorta from non-living renal transplant donors. Gene expression tests were performed to study genes potentially involved in various inflammatory processes and AAA related genes. Live PVAT and subcutaneous adipose tissue (SAT) from AAA were used for ex vivo co-culture with smooth muscle cells (SMCs) retrieved from non-pathological aortas. RESULTS: Adipose tissue was harvested from 27 AAA patients (n [gene expression] = 22, n [functional tests] = 5) and five control patients. An increased inflammatory gene expression of PTPRC (p = .008), CXCL8 (p = .033), LCK (p = .003), CCL5 (p = .004) and an increase in extracellular matrix breakdown marker MMP9 (p = .016) were found in AAA compared with controls. Also, there was a decreased anti-inflammatory gene expression of PPARG in AAA compared with controls (p = .040). SMC co-cultures from non-pathological aortas with PVAT from AAA showed increased MMP9 (p = .033) and SMTN (p = .008) expression and SAT increased SMTN expression in these SMC. CONCLUSION: The data revealed that PVAT from AAA shows an increased pro-inflammatory and matrix metallopeptidase gene expression and decreased anti-inflammatory gene expression. Furthermore, increased expression of genes involved in aneurysm formation was found in healthy SMC co-culture with PVAT of AAA patients. Therefore, PVAT from AAA might contribute to inflammation of the adjacent aortic wall and thereby plays a possible role in AAA pathophysiology. These proposed pathways of inflammatory induction could reveal new therapeutic targets in AAA treatment.


Assuntos
Aneurisma da Aorta Abdominal/genética , Quimiocina CCL5/genética , Interleucina-8/genética , Antígenos Comuns de Leucócito/genética , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/genética , Metaloproteinase 9 da Matriz/genética , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Idoso , Idoso de 80 Anos ou mais , Aneurisma da Aorta Abdominal/metabolismo , Aneurisma da Aorta Abdominal/patologia , Estudos de Casos e Controles , Quimiocina CCL5/metabolismo , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Feminino , Humanos , Interleucina-8/metabolismo , Antígenos Comuns de Leucócito/metabolismo , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Masculino , Metaloproteinase 9 da Matriz/metabolismo , Pessoa de Meia-Idade , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , PPAR gama/genética , PPAR gama/metabolismo , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...